首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   970篇
  免费   126篇
  国内免费   676篇
  2024年   3篇
  2023年   48篇
  2022年   48篇
  2021年   69篇
  2020年   69篇
  2019年   90篇
  2018年   74篇
  2017年   81篇
  2016年   89篇
  2015年   65篇
  2014年   59篇
  2013年   83篇
  2012年   78篇
  2011年   98篇
  2010年   66篇
  2009年   80篇
  2008年   90篇
  2007年   89篇
  2006年   81篇
  2005年   76篇
  2004年   38篇
  2003年   36篇
  2002年   40篇
  2001年   34篇
  2000年   26篇
  1999年   18篇
  1998年   33篇
  1997年   24篇
  1996年   18篇
  1995年   12篇
  1994年   7篇
  1993年   9篇
  1992年   12篇
  1991年   6篇
  1990年   1篇
  1989年   5篇
  1988年   2篇
  1987年   3篇
  1986年   2篇
  1985年   1篇
  1983年   2篇
  1982年   6篇
  1981年   1篇
排序方式: 共有1772条查询结果,搜索用时 340 毫秒
81.
82.
Manipulation experiments are a cornerstone of ecological research, but can be logistically challenging to execute—particularly when they are intended to isolate the ecological role of large, vagile species, like birds. Despite indirect evidence that birds are influential in many ecosystems, large‐scale, multi‐year bird manipulation experiments are rare. When these studies are conducted, they are typically realized with caged or netted exclosures, an approach that can be expensive, risky for wildlife, and difficult to maintain. In cases where caged exclosures are not appropriate, alternate approaches are needed to allow rigorous empirical studies on the ecological role of birds. Here, we present and validate a method for experimentally increasing the abundance and richness of birds at the scale of entire aquatic ecosystems. Unlike bird exclusion, this approach is experimentally tractable, appealing to land managers, and possible to deploy over large spatial scales. We tested the efficacy of our approach for increasing bird abundance and species richness at 16 central California ponds. Based on bird visitation data obtained by summer camera trapping, our approach significantly increased bird species richness and abundance at manipulated ponds compared to control ponds. Attractant treatments mitigated the negative effects of a major drought on bird species richness and generated a near doubling of bird abundance in the presence of attractants. Treatments had no effect on most mammal species, with the exception of ground squirrels, which increased in abundance in the presence of attractants. These results suggest that attractants are effective in increasing bird abundance and richness. We encourage researchers to consider this approach for experimentally isolating the ecological role of birds in aquatic and open terrestrial ecosystems, especially in cases where cost or logistical constraints preclude the use of caged or netted exclosures.  相似文献   
83.
Liu C  Du G S  Huang B B  Meng Q Y  Li H M  Wang Z J  Song F 《农业工程》2007,27(9):3670-3677
This research was carried on in constructed wetlands of Guan-Ting Reservoir, Beijing, China, from 2004 to 2005. The phytoplankon community was composed of 8 divisions (94 species, including genus and varieties) and the average cell density was 980.93× 104 cells per liter. The dominant divisions were Chlorophyta (36.8%), Bacillariophyta (31.0%) and Cyanophyta (23.4%). The removal rate of phytoplankton density was 72.7%. There was a positive linear correlation between phytoplankon density and total phosphorus. Here, 7 families (13 species) of aquatic vasular plants were found, which constituted emerging and submerging macrophyte communities. In the wetland system, the zooplankton community consisted of Protozoa, Rotifera, Cladocera and Copepoda (70 species). The average density was 4883 individuals per liter. Protozoan and Rotifera were the dominant groups and the removal rate of their density was 81.9%. The correlation between zooplankton and phytoplankton presented a quadratic curve. Also, the zoobenthos community contained Olisochaeta, Uniramia, Crustacea and Mollusca (15 species). The average density was 5670 individuals per m2 (62.3% was Uniramia) and the removal rate of their density was 92.4 %. The wetland system reduced CODMn, BOD5, TN, NH3-N, NO3-N, TP (total phosphor), PO4-P and SS in the water of Yong Ding River at 52.9%–99.1%.  相似文献   
84.
水淹状况是湿地植被动态的重要影响因素。该研究基于谷歌地球引擎(GEE)平台, 利用2000-03-01至2020-02-29所有覆盖研究区域的MODIS遥感影像数据, 分析20年间水淹频率(IF)、增强型植被指数(EVI)的时空变化以及湿地植被对IF变化的响应, 得出以下结论: (1) 20年来鄱阳湖水文节律发生了明显改变, 高IF (IF > 75%)水域面积呈现下降趋势, 从2000年1 435.3 km2下降至2019年的510.25 km2, 降幅为64.45%; (2)区域平均EVI呈显著上升趋势, 植被扩张主要集中在中部IF下降区域; (3)分析不同总水淹频率区域中平均EVI年际变化, 发现EVI与水淹状况的变化趋势相似, 2009年之后鄱阳湖水域面积萎缩趋势缓解, EVI增长速度出现下降; (4)鄱阳湖湿地植被主要沿水域面积萎缩方向扩张, 基于像元统计20年间IFEVI的变化趋势, 发现它们在空间分布上高度吻合, 这种空间异质性进一步证实水淹状况起到调节植被动态变化的作用。  相似文献   
85.
The area of wet grasslands on peat soil in the Netherlands is slowly increasing at the expense of drained, agriculturally used grasslands. This study aimed (i) to assess the contribution of wet grasslands on peat soil to methane (CH4) emissions, and (ii) to explain differences among sites and between years in order to improve our understanding of controlling factors. For these purposes, a field study was conducted in the period 1994–1996 in the nature preserve Nieuwkoopse Plassen, which is a former peat mining and agricultural area. Net CH4 emissions were measured weekly to monthly with vented closed flux chambers at three representative sites, and at ditches near these sites. Three-years average of CH4 emissions was 7.9 g CH4 m–2 yr–1 for Drie Berken Zudde, 13.3 for Koole, and 20.4 for Brampjesgat. Ditches near the sites emitted 4.2–22.5 g CH4 m–2 yr–1. The time-course of CH4 emissions for all experimental sites and years was fit with a multiple linear regression model with ground water level and soil temperature as independent variables. Lowering or raising the ground water level by 5 cm could decrease or increase CH4 emissions by 30–50%. Therefore, ground water level management of these grasslands should be done with care.  相似文献   
86.
Increased radiative forcing is an inevitable part of global climate change, yet little is known of its potential effects on the energy fluxes in natural ecosystems. To simulate the conditions of global warming, we exposed peat monoliths (depth, 0.6 m; surface area, 2.1 m2) from a bog and fen in northern Minnesota, USA, to three infrared (IR) loading (ambient, +45, and +90 W m–2) and three water table (–16, –20, and –29 cm in bog and –1, –10 and –18 cm in fen) treatments, each replicated in three mesocosm plots. Net radiation (Rn) and soil energy fluxes at the top, bottom, and sides of the mesocosms were measured in 1999, 5 years after the treatments had begun. Soil heat flux (G) increased proportionately with IR loading, comprising about 3%–8% of Rn. In the fen, the effect of IR loading on G was modulated by water table depth, whereas in the bog it was not. Energy dissipation from the mesocosms occurred mainly via vertical exchange with air, as well as with deeper soil layers through the bottom of the mesocosms, whereas lateral fluxes were 10–20-fold smaller and independent of IR loading and water table depth. The exchange with deeper soil layers was sensitive to water table depth, in contrast to G, which responded primarily to IR loading. The qualitative responses in the bog and fen were similar, but the fen displayed wider seasonal variation and greater extremes in soil energy fluxes. The differences of G in the bog and fen are attributed to differences in the reflectance in the long waveband as a function of vegetation type, whereas the differences in soil heat storage may also depend on different soil properties and different water table depth at comparable treatments. These data suggest that the ecosystem-dependent controls over soil energy fluxes may provide an important constraint on biotic response to climate change.  相似文献   
87.
湿地生态系统健康研究进展   总被引:108,自引:7,他引:101  
湿地作为一个生态系统 ,具有多种功能和价值 ,是人类最重要的环境资本之一 ,被称为“自然之肾”。湿地在蓄洪防旱、调节气候、控制土壤侵蚀、促淤造陆、降解环境污染等方面起着极其重要的作用。湿地拥有丰富的野生动植物资源 ,是众多野生动植物特别是珍稀水禽的繁殖和越冬地。不仅如此 ,湿地向人类提供大量的生产和生活资料 [1] 。然而 ,近些年来一些地区的湿地状况令人担忧 ,具体表现城市化、工业化、路基建设、农业开发及废物处理等造成湿地面积的缩小 ;水利、灌溉、水库蒸发、河流及地下水过度提取 ,沼泽地排水、挖渠、土地开荒、筑堤造…  相似文献   
88.
The Salton Sea as critical habitat to migratory and resident waterbirds   总被引:5,自引:3,他引:2  
Concern about the Salton Sea ecosystem, based on potential impacts of increasing salinity, contaminants, disease outbreaks, and large die-offs of birds, is heightened because of tremendous prior loss and degradation of wetland habitat in western North America. In 1999, we used a variety of survey methods to describe patterns of abundance of birds at the Salton Sea and in adjacent habitats. Our results further documented the great importance of the Salton Sea within the Pacific Flyway to wintering, migratory, and breeding waterbirds. Exclusive of Eared Grebes, we estimated about 187000 individual waterbirds at the Salton Sea in January, 88000 in April, 170000 in August, and 261000 in November. Additional surveys of Eared Grebes in November and December suggested the total population of all waterbirds was about 434000 to 583000 in those months, respectively. We also documented breeding by about 14000 pairs of colonial waterbirds. Waterbirds were particularly concentrated along the northern, southwestern, southern, and southeastern shorelines and river deltas. By contrast, some species of wading birds (Cattle Egret, White-faced Ibis, Sandhill Crane) and shorebirds (Mountain Plover, Whimbrel, Long-billed Curlew) were much more numerous in agricultural fields of the Imperial Valley than in wetland habitats at the Sea. Various studies indicate the Salton Sea is of regional or national importance to pelicans and cormorants, wading birds, waterfowl, shorebirds, and gulls and terns. Important taxa are the Eared Grebe, American White Pelican, Double-crested Cormorant, Cattle Egret, White-faced Ibis, Ruddy Duck, Yuma Clapper Rail, Snowy Plover, Mountain Plover, Gull-billed, Caspian, and Black terns, and Black Skimmer. Proposed restoration projects should be carefully assessed to ensure they do not have unintended impacts and are not placed where large numbers of breeding, roosting, or foraging birds concentrate. Similarly, plans to enhance opportunities for recreation or commerce at the Sea should aim to avoid or minimize disturbance to birds. Future research should focus on filling gaps in knowledge needed to effectively conserve birds at the Salton Sea.  相似文献   
89.
Temperature, dissolved oxygen and dissolved methane profiles were measured during autumn and summer, in a shallow floodplain lake in south-eastern Australia to determine the effects of water-column stability on methane and oxygen dynamics. The water column was well mixed in autumn. Strong thermal stratification developed in the late afternoon in summer, with top-to-bottom temperature differences of up to 6 °C. Methane concentrations in surface waters varied over a daily cycle by an 18-fold range in summer, but only by a 2-fold range in autumn. The implication of short-term temporal variation is that static chambers deployed on the water surface for short times (less than a day) in summer will significantly underestimate the diffusive component of methane emissions across the water–atmosphere interface. There was a marked diel variation in dissolved oxygen concentrations in summer, with the highest oxygen values (commonly 5–8 mg l–1) occurring in the surface waters in late afternoon; the bottom waters were then devoid of oxygen (< 0.2 mg l–1). Because of high respiratory demands, even the surface water layers could be nearly anoxic by morning in summer. The concentration of dissolved oxygen in the surface waters was always less than the equilibrium value. When the water column became thermally stratified in summer, the dissolved oxygen and methane maxima were spatially separated, and planktonic methanotrophy would be limited to a moving zone, at variable depth, in the water column. In summer the whole-wetland rates of oxygen production and respiration, calculated from long-term (5 h) shifts in dissolved oxygen concentrations over a diel period, were approximately 6–10 and 3–6 mmol m–3 h–1, respectively. These values correspond to net and gross primary production rates of 0.7–1.2 and 1.0–1.9 g C m–3 day–1, respectively.  相似文献   
90.
  • 1 In order to study the dynamics of primary production and decomposition in the lake littoral, an interface zone between the pelagial, the catchment and the atmosphere, we measured ecosystem/atmosphere carbon dioxide (CO2) exchange in the littoral zone of an eutrophic boreal lake in Finland during two open water periods (1998–1999). We reconstructed the seasonal net CO2 exchange and identified the key factors controlling CO2 dynamics. The seasonal net ecosystem exchange (NEE) was related to the amount of carbon accumulated in plant biomass.
  • 2 In the continuously inundated zones, spatial and temporal variation in the density of aerial shoots controlled CO2 fluxes, but seasonal net exchange was in most cases close to zero. The lower flooded zone had a net CO2 uptake of 1.8–6.2 mol m?2 per open water period, but the upper flooded zone with the highest photosynthetic capacity and above‐ground plant biomass, had a net CO2 loss of 1.1–7.1 mol m?2 per open water period as a result of the high respiration rate. The excess of respiration can be explained by decomposition of organic matter produced on site in previous years or leached from the catchment.
  • 3 Our results from the two study years suggest that changes in phenology and water level were the prime cause of the large interannual difference in NEE in the littoral zone. Thus, the littoral is a dynamic buffer and source for the load of allochthonous and autochthonous carbon to small lakes.
  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号